

Our nuclear legacy

The toxic inheritance of future generations

Our nuclear legacy

Nuclear waste - what are we talking about?

Our nuclear legacy

Nuclear waste - what are we talking about?

Generally, there are 6 types of radioactive waste:

- High level waste (HLW)
- Intermediate level waste (ILW)
- Low level waste (LLW)
- Very low level waste (VLLW)
- Very short-lived waste (VSLW)
- Exempt waste (EW)

Our nuclear legacy

High level waste (HLW)

- Spent or damaged fuel rods and reprocessing waste
- Generates significant amounts of heat for many centuries
- Contains large amounts of long lived radionuclides
- Recommendation: Indefinite deep geological disposal

Intermediate level waste (ILW)

- Ion-exchange resins and certain parts of a decomissioned reactor
- Requires shielding, containment and isolation for long periods of time
- Requires limited or no provisions for heat dissipation
- Recommendation: Long-term underground disposal

Low level waste (LLW)

- Contaminated equipment (protective shoe covers and clothing, rags, mops, filters, sheeting, maintenance equipment, pipes, etc.)
- Contains limited amounts of long-lived radionuclides, but may contain high activity levels of short lived radionuclides
- Requires robust isolation and containment for hundreds of years
- Recommendation: Long-term near-surface or underground disposal

Our nuclear legacy

Very low level waste (VLLW)

- Contaminated construction materials such as steel, concrete or plastic
- Very limited concentration of longer lived radionuclides
- Does not require high levels of containment or isolation
- Recommedation: disposal in special surface landfills

Very short-lived waste (VSLW)

- Usually materials from research or medical facilities
- Contains only radionuclides with short half lives (< 100 days) such as Iridium-192 or Technicium-99m
- Recommedation: safe storage for a few years, then clearance from regulatory control

Exempt waste (EW)

- Materials that meets politically defined criteria for clearance, examption or exclusion from regulatory control
- These can include contaminated and non-contaminated waste produced during the decomissioning of nuclear power plants
- Recommendation: disposal in conventional landfills or recycling, as long as effective individual doses do not exceed 10 μSv per year

Our nuclear legacy

Our nuclear legacy

Why should doctors worry about this subject?

Our nuclear legacy

Why should doctors worry about this subject?

- Proliferation risk of high level nuclear waste
- Public health hazard of storage and disposal sites:
 - Disposal sites could be a target for terrorists or foreign armies
 - Natural catastrophes
 - Human error
- Clearance of very low level nuclear waste could lead to radioactive materials accumulating in household appliances, construction materials or on normal landfills without any regulations or radiation protection measures

Our nuclear legacy

How urgent is the problem?

Our nuclear legacy

How urgent is the problem?

- At hundreds of uranium mines, radioactive waste has accumulated
- High level radioactive waste at enrichment and reprocessing sites poses a safety and proliferation risk not only a safety issue
- Of the approximately 440 nuclear power plants worldwide, over 160 will be shut down by 2030, creating a huge rise in nuclear waste
- Millions of tons of radioactively contaminated construction material are slated to be cleared and distributed to normal wase disposal sites, causing a rise in background radiation for the general public

Our nuclear legacy

What is the situation in different countries?

Our nuclear legacy

What is the situation in different countries?

Canada: Gordon Edwards

The United Kingdom: Sean Morris

Switzerland: Claudio Knüsli